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Abstract-In this paper, a new particle swarm optimization algorithm have been proposed. The algorithm is named as One Half Personal 

Best Position Particle Swarm Optimizations (OHGBPPSO) and a novel philosophy by modifying the velocity update equation has been 
presented. The performance of algorithm has been tested through numerical and graphical results. The results obtained are compared with 
the standard PSO (SPSO) for scalable and non-scalable problems. 
 

Index Terms- Particle Swarm Optimization, One Half Global Best Position Particle Swarm Optimization, Personal Best Position, Global 

Best Position, Global optimization, Velocity update equation. 

——————————      —————————— 
 

       1    INTRODUCTION 

 
TANDARD Particle Swarm Optimization:  

Particle swarm optimization (PSO) [1] is a 
stochastic, population-based search method, modeled 
after the behavior of bird flocks. A PSO algorithm 
maintains a swarm of individuals (called particles), 
where each individual (particle) represents a 
candidate solution. Particles follow a very simple 
behavior: emulate the success of neighboring particles, 
and own successes achieved. The position of a particle 
is therefore influenced by the best particle in a 
neighborhood, as well as the best solution found by 
the particle. Particle position 

ix  are adjusted using 
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where the velocity component, ( )iv t   represents the 

step size. For the basic PSO, 
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where w  is the inertia weight [12], 
1 2

c and c  are the 

acceleration coefficients (first acceleration coefficient 
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is represent the how much confidence in itself and 
second acceleration coefficient is referred the how 

much confidence in its neighborhood), , (0,1)
1 2
r r U

j j
 , 

ijy  is the personal best position of particle i and 

dimension j , and ˆ
jy  is the neighborhood best 

position of particle i  and dimension j .  The t  is 

represent the rate of change in time. 
 
Eberhart and Shi [15] suggested a more generalized 
PSO, where a constriction coefficient is applied to 
both terms of the velocity formula. Clerc and 
Kennedy [14] showed that the constriction PSO can 
converge without using Vmax: 
 

1 1 2 2
ˆ( 1) ( ( ) ( ) ( ))ij ij j ij ij j j ijv t v t c r y x c r y x        

 

 
where the constriction factor was set 0.7289. By using 
the constriction coefficient, the amplitude of the 
particle‘s oscillation decreases, resulting in its 
convergence over time. Kennedy [10] carried out 
some experiments using a PSO variant, which drops 
the velocity term from the PSO equation. 
 
If pi and pg were kept constant, a canonical PSO 
samples the search space following a bell shaped 
distribution centered exactly between the pi and pg. 
 
This bare bones PSO produces normally distributed 

random numbers around the mean
2

id gdp p
 (for 

each dimension d), with the standard deviation of the 

Gaussian distribution being id gdp p . 
 

Mendes and Kennedy [4] found that von Neumann 
topology (north, south, east and west, of each particle  
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placed on a 2 dimensional lattice) seems to be an 
overall winner among many different communication 
topologies. 
 
Kennedy [10] also proposed an alternative version of 
the barebones PSO, where 
 

(0,1) 0.5

( 1) ...(3)ˆ

( , )
2

y if U
ij

v t y yij ij ij
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Based on equation (3), there is a 50% chance that the 
jth dimension of the particle dimension changes to the 
corresponding personal best position. This version of 
the barebones PSO biases towards exploiting personal 
best positions. 
 

PSO variants are continually being devised in an 
attempt to overcome this deficiency, see e.g. [16] [17] 
[18] [19] [20] [21] [22] [23] [24] for a few recent 
additions. These PSO variants greatly increase the 
complexity of the original method and Pedersen and 
co workers [25, 26] have demonstrated that 
satisfactory performance can be achieved with the 
basic PSO if only its parameters are properly tuned. 
 

2    THE NEW PROPOSED ALGORITHM  
 

The motivation behind introducing OHGBPPSO is 
that in the velocity update equation instead of 
modifying the Personal Best and Global Best Position. 
We introduce a new velocity update equation as 
follows: 

ˆ ˆ

(( ) ) (( ) )
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where w  is the inertia weight, 1 2c andc  are the 

acceleration coefficients (first acceleration coefficient  
represent the how much confidence in itself and 
second acceleration coefficient referred the how much 

confidence in its neighborhood), , (0,1)
1 2
r r U

j j
 , ijy  

is the personal best position of i  particle and j  

dimension, and ˆ
jy  is the neighborhood best position 

of particle i  and dimension j . The t  is represent 

the rate of change in time. 
 

 

In the velocity update equation of this new PSO the 
first term represents the current velocity of the 
particle and can be thought of as a momentum term. 
The second term is proportional to the 

vector

ˆ(2 )

( )
11 2

y y
ij j

c r x
j ij

t







, is responsible for the 

attractor of particle‘s current position and positive 
direction of its own best position (pbest). The third 

term is proportional to the vector

ˆ(2 )

( )
2 2 2

y y
ij j

c r x
j ij

t







, 

is responsible for the attractor of particle‘s current 
position. 
 
The algorithm of OHGBPPSO is shown below:  
 
ALGORITHM- OHGBPPSO 

  
 

- Randomly initialize particle position and  
  Velocities. 
 

 - While do not terminate   
 

 Evaluate fitness objective functional value at 

current position x
i

. 

 If objective functional value is better than 

Personal Best Position ( y
ij

) then update y
ij

. 

  If objective function value is better than Global 

Best Position   ( ŷ
j

) then update ŷ
j

. 

- For each particle; 

 Update  velocity ( 1)v t
ij

 and position 

( 1)x t
ij

                    

ˆ ˆ
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           END OF THE ALGORITHM 
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Figure-I: Comparison of Particle Movement of SPSO and OHGBPPSO by Scalable Problems. 
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Figure-II: Comparison Movement of Particle SPSO and OHGBPPSO by Non-Scalable Problems. 
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3   TEST PROBLEMS  
 
The relative performance of SPSO and OHGBPPSO is 
evaluated on two kinds of problem sets. Problem Set 
1 consists of 15 scalable problems and Problem Set-II 
consists of 13 non-scalable Problems.  
  
4   SCALABLE AND NON-SCALABLE  
     PROBLEMS 
 

 
 
4.1 Scalable Problem: In which scalable problem 

the problem size is increase and decrease 
according to time. 

4.2 Non-Scalable Problem: In which non-scalable 
problem the problem size is fixed, but the 
problems have many local as well as global 
optima.  

Table-1: Detail of 15 Scalable Problems SET-I (Continued) (In which Particle size in the swarm increasing and 
decreasing, no particle sized is fixed). 
 
  

Problem  
No. 

Problems 
Name 

Problems Range of the Problems 

1.  Ackley 
1 2

1

1

1

( ) 20exp( 0.02 )

exp( cos( )) 20

n

i

i

n

i

i

Min f x n x

n x e









 

  



 

 

In which search space lies 

between 30 30x
i

    and 

Min Objective Function Value is 
0. 
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2.  Cosine 
Mixture 

2

1 1

( ) 0.1 cos(5 )
n n

i i

i i

Min f x x x
 

     
In which search space lies 

between 1 1x
i

    and Min 

Objective Function Value 

is 0.1 ( )n  . 

3.  Exponential 
2( ) ( 0.5 )

1

n
Min f x x

i
i

  


 

In which search space lies 

between 1 1x
i

    and Min 

Objective Function Value is -1. 
4.  Griewank 

1 2( ) 1 cos( )
4000 1 1

xnn
iMin f x x

i ii i

   
 

 

In which search space lies 

between 600 600x
i

    and 

Min Objective Function Value is 
0. 

5.  Rastrigin 
2( ) 10 [ 10cos(2 )]

1

n
Min f x n x x

i i
i

  


  

In which search space lies 

between 5.12 5.12x
i

    and 

Min Objective Function Value is 
0. 

6.  Function ‘6’ 1
2 2 2( ) [100( ) ( 1) ]

1
1

n
Min f x x x x

i i i
i


   




 
In which search space lies 

between 30 30x
i

    and 

Min Objective Function Value is 
0. 

7.  Zakharov’s 
2 2 4( ) [ ( ) ] [ ( ) ]

2 21 1 1

n n ni i
Min f x x x x

i i i
i i i

    
  

 

 
In which search space lies 

between 5.12 5.12x
i

    and 

Min Objective Function Value is 
0. 

8.  Sphere 
2( )

1

n
Min f x x

i
i

 


 

In which search space lies 

between 5.12 5.12x
i

    and 

Min Objective Function Value is 
0. 
 

9.  Axis parallel 
hyper 

ellipsoid 

2( )

1

n
Min f x ix

i
i

 


 

In which search space lies 

between 5.12 5.12x
i

    and 

Min Objective Function Value is 
0. 

10.  Schwefel ‘3’ 

( )

1 1

nn
Min f x x x

i i
i i

  
 

 

In which search space lies 

between 10 10x
i

    and 

Min Objective Function Value is 
0. 

11.  Dejong 
4( ) ( (0,1))

1

n
Min f x x rand

i
i

 


 

In which search space lies 

between 10 10x
i

    and 

Min Objective Function Value is 
0. 

12.  Schwefel ‘4’ 
( ) { ,1 }Min f x Max x i n

i
    

In which search space lies 

between 100 100x
i

    and 

Min Objective Function Value is 
0. 
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13.  Cigar 
2 2( ) 100000

1

n
Min f x x x

i i
i

  


 

In which search space lies 

between 10 10x
i

   and Min 

Objective Function Value is 0. 
14.  Brown ‗3‘ 1

2 2 2 2( ) [( )( 1) ( 1)( 1)]
1 1

1

n
Min f x x x x x

i i i i
i


    

 


 

In which search space lies 

between 1 4x
i

    and Min 

Objective Function Value is 0. 
15.  Function ‘15’ 

2( )

1

n
Min f x ix

i
i

 


 

In which search space lies 

between 10 10x
i

    and 

Min Objective Function Value is 
0. 

                 
 

Table-2: Detail of 13 Non- Scalable Problems SET-II ((In which Particle size in the swarm is fixed, no particle 
increasing and decreasing in the swarm). 
 

Problem 
No. 

Problems Name Problems Range 

1.  Becker and Lago 2 2( ) ( 5) ( 5)
1 2

Min f x x x     
In which search space lies 

between 10 10x
i

    and Min 

Objective Function Value is 0. 
2.  Bohachevsky ‘1’ 2 2( ) 2 0.3cos(3 )

1 2 1

0.4cos(4 ) 0.7
2

Min f x x x x

x

  

 




 

In which search space lies 

between 50 50x
i

    and Min 

Objective Function Value is 0. 

3.  Bohachevsky ‘2’ 2 2( ) 2
1 2

0.3cos(3 )cos(4 ) 0.3
1 2

Min f x x x

x x

  

 

 

In which search space lies 

between 50 50x
i

    and Min 

Objective Function Value is 0. 

4.  Branin 2 2( ) ( )
2 1 1

(1 )cos( )
1

Min f x a x bx cx d

g h x g

   

  
 

5.1 5
1, , , 6,

24

1
10,

8

a b c d

g h

   

 





 

In which search space lies 

between 5 100
1

x   , 

5 15
2

x    and Min Objective 

Function Value is 0.398. 

5.  Eggcrate 2 2 2 2( ) 25(sin sin )
1 2 1 2

Min f x x x x x   

 

In which search space lies 

between 2 2x
i

     and Min 

Objective Function Value is 0. 
6.  Miele and 

Cantrell 
4 6( ) (exp( ) ) 100( )

1 4 2 3

4 8(tan( ))
3 4 1

Min f x x x x x

x x x

   

  

 
In which search space lies 

between 1 1x
i

    and Min 

Objective Function Value is 0. 
7.  Modified 

Rosenbrock 
2 2 2 2( ) 100( ) [6.4( 0.5) 0.6]

2 1 2 1
Min f x x x x x     

 

In which search space lies 

between 5 , 5
1 2

x x    and 

Min Objective Function Value is 0 
 

8.  Easom ( ) cos( )cos( )
1 2

2 2*exp( ( ) ( ) )
1 2

Min f x x x

x x



    

In which search space lies 

between 10 10x
i

    and Min 

Objective Function Value is -1 
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9.  Periodic 2 2( ) 1 sin sin

1 2

2 20.1exp( )
1 2

Min f x x x

x x

  

  

 

In which search space lies 

between 10 10x
i

    and Min 

Objective Function Value is 0.9 

10.  Powell’s 2 2( ) ( 10 ) 5( )
1 2 3 4

4 4( 2 ) 10( )
2 3 1 4

Min f x x x x x

x x x x

   

   

 

In which search space lies 

between 10 10x
i

    and Min 

Objective Function Value is 0 

11.  Camel back-3 12 4 6( ) 2 1.05
1 1 16

2
1 2 2

Min f x x x x

x x x

  

 

 

In which search space lies 

between 5 , 5
1 2

x x    and 

Min Objective Function Value is 0 

12.  Camel back-6 12 4 6( ) 4 2.1
1 1 13

2 44 4
1 2 2 2

Min f x x x x

x x x x

  

  

 

In which search space lies 

between 5 , 5
1 2

x x    and 

Min Objective Function Value is -
1.0316 

13.  Aluffi-Pentini’s 4 4 2( ) 0.25 0.5 0.5
1 1 1

20.1 0.5
1 2

Min f x x x x

x x

  

 

 

In      which search space lies 

between 10 10x
i

    and Min 

Objective Function Value is 0.352 

 
 

 

5.  PARAMETER SETTING AND ANALYSIS OF RESULTS 
 
 

5.1 Parameter Setting: The maximum number of 
function evaluations is fixed to be 30,000.The 
swarm size is fixed to 20 and dim is 30. The 

inertia weight is 0.7  and the acceleration 

coefficients for SPSO and OHGBPPSO are set to 

be 1.5
1 2

c c  . 

5.2 Results Analysis: In observing Table 3, it can be 
seen that OHGBPPSO gives a better quality of 
solutions as compared to SPSO. Thus, for the 
scalable problems OHGBPPSO outperforms SPSO 
with respect to efficiency, reliability, cost and 

robustness. In observing Table 4, it can be seen 
that OHGBPPSO gives a better quality of 
solutions as compared to SPSO. Thus, for the non-
scalable problems OHGBPPSO outperforms SPSO 
with respect to efficiency, reliability, cost and 
robustness, Table 3. 
It is observed that SPSO could not solve two 
problems with 100% success, whereas 
OHGBPPSO solved all the problems with 100% 
success.  

 
 

 

Table-3 Comparison of SPSO and OHGBPPSO by Scalable Problems Set-I 

Problem 

No. 

Minimum Function 

Value 

Mean Function Value Standard 

Deviation 

Rate of Success 

 SPSO OHGBPPSO SPSO OHGBP 

PSO 

SPSO OHGBP

PSO 

SPSO OHGBPPS

O 

1 0.674207 0.524363 14699.6000 3835.60000 0.323300 0.089916 68.00% 100% 

2 0.683359 0.415349 902.400000 812.400000 0.051324 0.109088 100% 100% 

3 0.000000 0.000000 40.000000 40.000000 0.000569 0.000483 100% 100% 

4 0.770386 0.680129 7038.80000 4505.20000 0.024076 0.053167 100% 100% 
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Table-4 Comparison of SPSO and OHGBPPSO by Non-Scalable Problems Set-II 

 

 

 

 

 

 

 

 

 

5 20.89413 0.222967 13000.0000 5724.00000 16.219312 0.393235 0.00% 100% 

6 0.007444 0.002482 140.400000 130.000000 0.263601 0.280204 100% 100% 

7 0.001967 0.000010 52.800000 64.400000 0.251745 0.218062 100% 100% 

8 0.000000 0.000000 40.000000 40.000000 0.029778 0.025274 100% 100% 

9 0.000005 0.000004 40.400000 44.400000 0.135186 0.253899 100% 100% 

10 0.001648 0.001330 40.400000 42.000000 0.141846 0.225886 100% 100% 

11 0.635139 0.172111 5653.20000 4446.40000 0.065082 0.189287 100% 100% 

12 0.012020 0.011124 65.200000 74.000000 0.256712 0.235492 100% 100% 

13 0.057514 0.047514 1196.00000 1587.00000 0.216409 0.246410 100% 100% 

14 0.002002 0.002000 40.000000 40.000000 0.129936 0.147956 100% 100% 

15 0.000000 0.000000 40.000000 40.000000 0.011661 0.013672 100% 100% 

Problem 

No. 

Minimum Function 

Value 

Mean Function Value Standard Deviation Success of Rate 

 SPSO OHGBP 

PSO 

SPSO OHGBP 

PSO 

SPSO OHGBP 

PSO 

SPSO OHGBPPSO 

1 0.500000 0.500104 41.600000 49.600000 0.088031 0.089541 100% 100% 

2 0.004665 0.015410 48.800000 50.000000 0.279521 0.251598 100% 100% 

3 0.002060 0.009141 54.400000 61.200000 0.240645 0.239715 100% 100% 

4 0.003335 0.006881 81.600000 86.400000 0.257595 0.258021 100% 100% 

5 0.002562 0.034907 60.400000 59.600000 0.249756 0.251556 100% 100% 

6 73046.5964 73046.59648 30000.000 30000.000 0.000000 0.000000 0.00% 0.00% 

7 14.541432 26.900800 30000.000 30000.000 0.000000 0.000000 0.00% 0.00% 

8 0.009239 0.091784 59.200000 96.800000 0.286622 0.230102 100% 100% 

9 0.480964 0.480470 40.000000 40.000000 0.037841 0.033635 100% 100% 

10 0.075842 0.034330 578.80000 546.80000 0.233322 0.245201 100% 100% 

11 0.006245 0.006541 46.800000 49.600000 0.206116 0.236984 100% 100% 

12 0.017029 0.003487 51.200000 56.800000 0.262820 0.229284 100% 100% 

13 0.010104 0.012869 45.600000 54.400000 0.217098 0.210105 100% 100% 
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Figure A: Comparing the SPSO and OHGBPPSO with the help of 15 Scalable Problems SET-I. 

 

 

 
 

 

 
 

Figure B: Comparing the SPSO and OHGBPPSO with the help of 13 Non-Scalable 
Problems SET-II 

 
 

 

 
 
 

Note: x-axis represented the scalable and non-scalable problems and y-axis denoted the Minimimum Objective 
Function Values 

6 CONCLUSIONS  
 

 

In this paper, a new PSO approach One Half Global 
Best Position Particle Swarm Optimization is 
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presented. The algorithm is tested on scalable 
problems (increasing or decreasing particle in the 
swarm) and non-scalable problems (swarm size is 
fixed). The results show that when the particle size is 
increasing and decreasing in the swarm, the 
proposed algorithm outperforms the Standard 
Particle Swarm Optimization. But in the case when 
the particle size is fixed and no particle enters/leaves 
the swarm the Standard Particle Swarm Algorithm is 
better than the proposed one. 
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